bookmate game
en
Instaread

Summary of Algorithms to Live By

Obavesti me kada knjiga bude dodata
Da biste čitali ovu knjigu otpremite EPUB ili FB2 datoteku na Bookmate. Kako da otpremim knjigu?
Summary of Algorithms to Live By by Brian Christian and Tom Griffiths | Includes Analysis

Preview:

Algorithms to Live By by Brian Christian and Tom Griffiths is an immersive look at the history and development of several algorithms used to solve computer science problems. It also considers potential applications of algorithms in human life including memory storage and network communication.
One such computer science problem is the optimal stopping problem, the mathematical puzzle for determining how long to review options and gather data before settling on the best choice available. The algorithm, based on statistical analysis, shows that there is an optimal place or time to stop researching options or solutions to a problem and instead commit to the next option that’s just as good as those already considered. Similarly, the mathematical way to decide whether to try something new or stick with the familiar choice is expressed by the Gittins Index score of any given alternative. It values a complete unknown more highly than a…

PLEASE NOTE: This is key takeaways and analysis of the book and NOT the original book.

Inside this Instaread Summary of Algorithms to Live By by Brian Christian and Tom Griffiths | Includes Analysis

Overview of the Book
Important People
Key Takeaways
Analysis of Key Takeaways

About the Author

With Instaread, you can get the key takeaways, summary and analysis of a book in 15 minutes. We read every chapter, identify the key takeaways and analyze them for your convenience.
Ova knjiga je trenutno nedostupna
23 štampane stranice
Prvi put objavljeno
2019
Godina izdavanja
2019
Da li već pročitali? Kakvo je vaše mišljenje?
👍👎

Citati

  • Filip Miljojkovicje citiraoпре 5 година
    optimal stopping” algorithm

Na policama za knjige

  • Didissana
    Work
    • 23
fb2epub
Prevucite i otpustite datoteke (ne više od 5 odjednom)